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Abstract If a non-indigenous species is to thrive and

become invasive it must first persist under its new set

of environmental conditions. Net reproductive rate

(R0) represents the average number of female off-

spring produced by a female over its lifetime, and has

been used as a metric of population persistence. We

modeled R0 as a function of ambient water tempera-

ture (T) for the invasive marine calanoid copepod

Pseudodiaptomus marinus, which is introduced to

west coast of North America from East Asia by ship

ballast water. The model was based on temperature-

dependent stage-structured population dynamics

given by a system of ordinary differential equations.

We proposed a methodology to identify habitats that

are non-invasible for P. marinus using the threshold of

R0(T) \ 1 in order to identify potentially invasible

habitats. We parameterized the model using published

data on P. marinus and applied R0(T) to identify the

range of non-invasible habitats in a global scale based

on sea surface temperature data. The model predic-

tions matched the field evidence of species occur-

rences well.

Keywords Net reproductive rate � Invasive species �
Marine copepods � Pseudodiaptomus marinus �
Temperature � Stage-structured population models �
Ordinary differential equations � Ecological

modeling � Habitat invasibility � Habitat suitability

Introduction

Assessment of habitat invasibility often relies on

statistical matching of the external environmental

variables in native and novel habitats via methods

such as ecological niche modeling (ENM) (Jeschke

and Strayer 2008; Mercado-Silva et al. 2006). How-

ever, it is often the case that invasive species can

tolerate environmental conditions in novel habitats

that are outside those found in their native habitats

(Broennimann et al. 2007; Elith and Leathwick 2009).

This indicates that the absence of a species in particular

environments may not necessarily mean such environ-

ments are unsuitable for the species. As an alternative

to ENM, we can determine the response of potential

invaders to specific environmental conditions under

controlled laboratory settings. For example, we can

measure the rates of mortality, offspring production,

and stage durations under different environmental

conditions. However, we must still translate these
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measures into a habitat invisibility indicator or metric.

Will a population persist and grow under a given set of

environmental conditions? To answer this question we

can use the net reproductive rate R0 of a population as a

metric. R0 is a measure of a population’s reproductive

success (Ackleha and de Leenheerb 2008), and there-

fore, is a population fitness trait, which represents the

average number of offspring produced by a female

over its lifetime (de-Camino-Beck and Lewis 2008). It

has been used in evolutionary invasion analysis to

predict long term evolutionary outcomes (Hurford

et al. 2010). When R0 [ 1, a population grows, and

when R0 \ 1, a population tends to decrease to extinc-

tion (Boldin 2006). Thus, we can use R0 to decide

which habitats are suitable or unsuitable for a species

by determining whether environmental parameters

result in R0 [ 1 or R0 \ 1. We derived R0 from a mech-

anistic state-structured population model given by a

system of ordinary differential equations and param-

eterized by data from laboratory experiments. This

method allows us to predict the range of habitats that

are non-invasible or potentially invasible for a species

or strain.

Our model species, Pseudodiaptomus marinus,

is an invasive marine calanoid copepod that was

introduced to the Pacific coast of North America

(Fleminger and Kramer 1989) and coastal waters in

Southern Chile from its native habitat in East Asia via

ballast water (Bolens et al. 2002). It is a perennial egg-

carrying calanoid copepod, spawns continuously

throughout the year, and has multiple overlapping

generations (Uye et al. 1983). Its life-history traits

such as fertility, mortality and maturation rates are

known to be functions of temperature (Liang and Uye

1997a; Uye et al. 1983). P. marinus has also been

reported in many other oceanic habitats around the

world (Razouls et al. 2011) and has been expanding its

range (Jiménez-Pérez and Castro-Longoria 2006).

Despite high propagule pressure, P. marinus has not

been reported in the coastal ecosystems of Oregon and

Washington (Cordell et al. 2008), or Vancouver

Harbour (Piercey et al. 2000), indicating that it may

be a successful invader only in selected habitats. It has

not been clear what environmental factors limit its

geographical distribution in terms of its physiological

tolerance.

Here we modeled R0 of P. marinus as a function

of temperature assuming continuous time stage-

structured population dynamics of the species based

on a system of linear first order ordinary differential

equations (ODEs). ODE transmission models in

epidemiology literature are commonly evaluated

using R0, although it is less commonly used in stage-

structured life-history dynamics. We parameterized

the model using previously published data from

laboratory experiments and field surveys (Liang and

Uye 1997a; Uye et al. 1983).

The R0-based approach to determining habitat

invasibility, while appealing, is necessarily limited

by the range of environmental conditions under which

the laboratory experiments can produce parameters.

When R0 is calculated using model parameters that

were estimated for a limited range of primary envi-

ronmental variables (e.g. temperature only), with other

secondary environmental variables (e.g. salinity, day-

light levels) held at optimal levels in the laboratory,

results are not likely to be representative of what the

species experiences in the field. In these cases,

however, it is possible to use the R0-based approach

to identify which habitats are non-invasible. If R0 \ 1

when secondary variables are optimal it also should

remain below one when secondary variables are

suboptimal. In this way we can identify temperature

(T) thresholds for invasibility of the marine copepod P.

marinus using R0(T).

The method we develop yields R0(T) as a function

of temperature, allowing us to predict the range of

temperatures that inhibit the growth of P. marinus, and

thereby to predict the range of habitats that are

potentially invasible to P. marinus. This method can

be generally applied to model R0 for other similar

species. The results is complimentary to ENM and has

a further advantage over ENM in terms of predicting

species’ potential spread over habitats that differ from

their native habitats.

Methods

We modeled stage-structured population dynamics of

P. marinus using a system of first order linear ODEs

assuming continuous year-round growth and overlap-

ping generations (Uye et al. 1983). We followed the

methods in van den Driessche and Watmough (2002) to

model the net reproductive rate R0 based on the

ODE model. Our model contains fertility, matura-

tion, and mortality rate parameters. Because stage

based fertility, mortality, and maturation rates are
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temperature-dependent (Uye et al. 1983; Liang and

Uye 1997a), we modeled the rate parameters as

functions of temperature. This allowed us to calculate

the temperature-dependent R0.

Model

Egg-carrying marine calanoid copepod Pseudodiapto-

mus marinus has six naupliar stages, five copepodid

stages, and one adult stage. We do not include naupliar

stage 1 in the model as data corresponding to this stage

are not available due to difficulty in measurement as it

lasts only few minutes (Uye et al. 1983). However, the

data on naupliar stage 2 can be considered as an

approximation, combining stage 1 and stage 2 into a

single stage.

We define n(t) to be a vector representing the stage

composition of the population at time t, and A(T) be a

matrix of parameter space of vital rates (fertility,

maturation, and mortality) that depend on temperature

(T). Thus, we can write the rate of change of stage

composition as follows:

dnðtÞ
dt
¼ AðTÞnðtÞ ð1Þ

where,

nðtÞ ¼ ½n1ðtÞ; n2ðtÞ; . . .; n12ðtÞ�T

where, li(T) and ci(T), b(T) are stage-dependent

mortality, maturation, and fertility rates respectively,

which are functions of temperature. Here, n1 repre-

sents the number of eggs, n2, …, n6 represents the

number of individuals in the five naupliar stages

(excluding stage 1), n7, …, n12 represents the number

of individuals in the five copepodid stages and the

adult stage 12. b(T) is the fertility rate (rate of egg

production) in adult females as a functions of temper-

ature. The constant q is the average proportion of

ovigerous females in the adult population, which is

estimated to be 0.61 (Liang and Uye 1997b). See

Table 1 for all notations. We derived the net repro-

ductive rate R0 for P. marinus based on the above

model as described below.

R0 as a function of temperature

First, we wrote the matrix A as A = F - V where F is

the matrix of fertility coefficients (non-negative and

non-zero), and V is the matrix of transition coefficients

(i.e. net maturation and mortality rates). R0 can then be

written as R0 = q[FV-1], where q is the spectral

radius of the matrix FV-1 (van den Driessche and

Watmough 2002). That is q½FV�1� ¼ max
1� i� n

jkijwhere

k1, k2, …, kn are eigenvalues of the square matrix

FV-1. Note that the intrinsic growth rate defined as the

maximum real eigenvalue of the square matrix A has a

non-linear relationship with net reproductive rate R0

(Wallinga and Lipsitch 2007). However, the intrinsic

growth rate is positive if and only if R0 [ 1.

We modified the model to express R0 as a function

of temperature, such that R0(T) = q[F(T)V(T)-1].

Using the graph reduction method (de-Camino-Beck

and Lewis 2007) (see derivation in ‘‘Appendix 1’’), we

can also write R0 as,

R0ðTÞ ¼

qbðTÞ
zfflffl}|fflffl{

rate of production of offspring by females

lsðTÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

mortality rate at stage s

Y
s�1

i¼1

ciðTÞ
liðTÞ þ ciðTÞ

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

prob: of maturating into stage s

where s is the final stage (stage 12) for P. marinus. We

modeled temperature-dependent parameters in the

model as described in the next section.

AðTÞ ¼

�l1ðTÞ � c1ðTÞ 0 : 0 qbðTÞ
c1ðTÞ �l2ðTÞ � c2ðTÞ : 0 0

0 c2ðTÞ : : :
: : : �l11ðTÞ � c11ðTÞ 0

0 0 : c11ðTÞ �l12ðTÞ

0

B

B

B

B

@

1

C

C

C

C

A
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Fertility rates b(T)

Eggs are produced by adult females in stage 12 (n12).

Fertility rate, b(T), can be written as b(T) = f(T)/Dt,

where f(T) is the number of eggs produced by an adult

female over time Dt at average temperature T. Uye

et al. (1983) fitted a linear model to parameterize b(T).

The linear model takes the form b(T) = 0.771T

- 4.48, with R2 = 0.84. Residual analyses of Uye’s

data, however, show that residuals are not randomly

distributed along the fitted line indicating that linearity

may not be the appropriate assumption. There is a

depression in fertility rates at low temperatures.

Furthermore, the linear model assumes that fertility

is unbounded with increasing temperature, which is

not biologically valid. We therefore refitted the data

with a sigmoidal curve, assuming log normally

distributed errors. We incorporated a lag parameter

(b) to relax the assumption that the curve must

otherwise intercept the y-axis at the origin. The

sigmoidal curve allows us to assume that fertility rate

has a maximum value. Biologically it is more appro-

priate to assume that fertility rate is a bell-shaped

curve, however we did not have the data to extend our

curve to the point were b(T) begins to decrease at high

temperatures. Hence, our model for fertility rate can be

written as,

bðTÞ ¼ fmfle
wðT�bÞ= fm þ flðewðT�bÞ � 1Þ

h i

where, fm is the maximum rate of fertility, fl is fertility

rate at the lowest temperature, and w is a shape

parameter that accounts for the depression in fertility

at lower temperatures. We compared the regression fit

of linear model used in Uye et al. (1983) with our

sigmoidal model using residual sum of squares.

Table 1 Meaning of mathematical notations

Notation Description

n1 Number of eggs

n2, …, n6 Number of individuals in the five naupliar stages (excluding stage I)

n7, …, n12 Number of individuals in the five copepodid stages and the adult stage 12

b(T) Fertility rate (rate of egg production) in adult females as a function of temperature

q Average proportion of ovigerous females in the adult population, assumed to be a constant value of 0.61 (Liang and Uye

1997b)

li(T) Rate of mortality in stage i as a function of temperature

ci(T) Rate of maturation of individuals surviving to stage i as a function of temperature

A 12 9 12 linear matrix composed of maturation, mortality and fertility rates, such that dn(t)/dt = An(t), where n are

vectors of stage classes

T Temperature

R0 Net reproductive rate

fm Maximum rate of fertility

fl Fertility at the lowest temperature

w Shape parameter that accounts for the depression in fertility rate at low temperatures

b Lag parameter to relax the assumption that the fertility rate curve otherwise intercepts y-axis at the origin

za(t) Proportion of individuals at each stage a

da Stage (a) duration times random variable

da Mean stage (a) duration times

Da Stage (a) development time distribution

Da Mean stage (a) development times

aa Constant that varies with stage a in maturation function of temperature caðTÞ ¼ ðT � 1Þ1:8=ðaa � aa�1Þ where a0 = 0

derived from Belehradek’s function

/ Scale parameter in Sv ¼ expð�/avÞ
v Shape parameter in Sv ¼ expð�/avÞ
j Parameters from mortality as a quadratic function of temperature l(T) = j2T2 ? j1T ? j0
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Maturation rates ci(T)

We solved the system of ODE’s represented by Eq. 1

analytically for initial values corresponding to a single

individual in stage 1, n1(0) = 1, and ni(0) = 0 for

i = 2, …, 12. This allowed us to follow a single

cohort over time with no additional individuals being

added to the system (‘‘Appendix 2’’).

In experimental studies, maturation rates are com-

monly calculated using median development times, or

the time it takes for 50% of the cohort to mature from

eggs past a given stage (e.g. Uye et al. 1983; Breteler

et al. 1994; Lee et al. 2003.). An assumption under-

lying such conventional calculation of maturation rate

using ‘proportions not yet past given stage’ is that

daily mortality rates of copepods are the same across

all stages for a cohort. It excludes the mortality rate

parameter from the equation and assumes that daily

stage proportions are the result of individuals maturing

from one stage to another. We made the same

assumption here in the estimation of maturation rates

from our model as P. marinus data are available only

as proportions of a cohort remains in each stage over

time with the same assumption. Thus, we normalized

the stage size data na(t) for each time step (t) dividing

it by total remaining population of the cohort at that

time step to give the proportion at each stage za(t). This

assumption made the proportion at each stage za(t) to

be independent from the mortality rates (‘‘Appendix

3’’).

Using Eq. 6 in ‘‘Appendix 3’’ we can describe the

proportion of individuals not having past stage a, i.e.
Pa

i¼1 ziðtÞ, as,

X
a

i¼1

ziðtÞ ¼ 1�
X

a

i¼1

Y
a

j¼1
j 6¼i

cj

cj � ci

ð1� e�ci tÞ

2

6

6

4

3

7

7

5
: ð2Þ

As shown by Cox (1967), this equation can also be

derived from assuming the length of time that a

copepod takes in a stage (stage duration time) as an

exponentially distributed random variable, da, such

that the probability density function of da is cae�cat and

cumulative density function of da is ð1� e�catÞ, where

ca is the stage maturation rate, and la = 0 for all

stages a. The length of mean time taken to exit stage a,

i.e. stage development time, Da, becomes a random

variable defined as Da ¼
Pa

i¼1 di of which the cumu-

lative density function of is 1�
Pa

i¼1 ziðtÞ
� �

. The

quantity
Pa

i¼1 ziðtÞ, thus yields the proportion of

individuals not having past stage a.

We fitted stage proportion data from Uye et al.

(1983) to Eq. 2 using nonlinear least squares regres-

sion to estimate ca. The data used were collected for

P. marinus at 20�C. We calculated the mean stage

duration times da as da ¼ 1
ca

at 20�C. This yielded from

the fact that da is an exponentially distributed random

variable. We then used da calculated for 20�C to

estimate the relationship between Da and temperature

(T). We assumed the relationship given by Beleh-

radek’s function, Da ¼ aaðT � 1Þ�1:8
(as used by Uye

et al. (1983) for P. marinus), where T is temperature in

centigrade and aa is a constant that varies with stage a.

Using calculated aa, we estimated the parameters for

ca(T) from the following equation derived from the

above, caðTÞ ¼ ðT � 1Þ1:8=ðaa � aa�1Þ for each stage

a at temperatures (T). Here, a0 = 0.

As an advancement to the above model, we

modified Eq. 1 to assume that stage duration times

are gamma distributed (Breteler et al. 1994; Lee et al.

2003) by replacing the earlier assumption on expo-

nentially distributed times. That is, probability density

function of da now becomes ck

CðkÞ t
k�1e�cat where, CðkÞ

¼ ðk � 1Þ!; ca [ 0; k [ 0. Mathematically this can be

achieved by assuming that there are sub-stages (ka)

within each stage a in Eq. 1 given that duration times

of sub-stages are exponentially distributed (see Linear

Chain Trick in MacDonald 1978 for a full description).

Here we assumed that mortality and maturation rates

of sub-stages were the same for each stage. Thus the

number of sub-stages, k, in Eq. 1 is equivalent to

assuming the shape parameter k in the gamma

distributed stage duration times. Here we assumed ka

to be the same k for all stages a as previous studies

suggested for copepods (e.g. Breteler et al. 1994; Lee

et al. 2003). The method for fitting the model with

multiple sub-stages is outlined in ‘‘Appendix 4’’.

The mean stage duration times da become da ¼ k
ca

for the modified model for gamma distributed da.

Therefore

caðTÞ ¼ kðT � 1Þ1:8=ðaa � aa�1Þ ð3Þ

where a0 = 0. Note that the advanced model (see

‘‘Appendix 4’’ through Eq. 3) reduces to the simple

model when k = 1 and e = 0. We compared the

model fits for k = 1, and k = 2, 3 using AIC and v2
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test to determine which model assumption was the best

to estimate ca(T). We used the estimated stage duration

times to calculate mortality rates as shown in the next

section.

Mortality rates l(T)

Liang and Uye (1997a) estimated the percent survival

of nine generations of the population for P. marinus

from the west coast of Japan under different mean

temperatures. We used these data to estimate survival

curves at different temperatures. Because of their

estimation procedure, Liang and Uye reported percent

survival [100% in some cases; these values were

reduced to 100%. We fitted the function Sv ¼ exp

ð�/avÞ for the proportion surviving from eggs to stage

a, where / is a scale parameter and v is a shape

parameter. We estimated / and v using non-linear

least squares regression. We calculated the proportion

of individuals that died in each stage with respect to

the proportion of individuals that matured into the

current stage from the previous stage using Sv. We

refer to Sv as a modified Wiebull function because

(1 - Sv) is the cumulative density function of the

Wiebull distribution (1951).

To obtain estimates of mortality rates la(T) for each

stage a, we divided the estimated proportions that died in

each stage by the stage duration times, given by da ¼ 1
ca

for the exponential distributions (simple model), and

da ¼ k
ca

for gamma distributions (advanced model) at

the same temperatures. We pooled mortality rates

across stages so as to be consistent with our earlier

assumption (in modeling stage maturation rates using

experimental data) that mortality rates across all

stages are the same. We fitted a quadratic function

l(T) = j2T2 ? j1T ? j0 for the pooled data using

nonlinear least squares regression. We did not use the

survey measurement data at 27.4�C in Uye et al.

(1983) for above calculations as it yielded near zero

daily mortality rates at such a comparatively high

temperature which resulted in a biologically inex-

plainable pattern that contradicted the general trend,

suggesting that those data may be outliers.

We tested whether the assumption behind pooling

data, i.e. mortality rates are the same across all stages

for a given temperature (as in Breteler et al. 1994; Uye

et al. 1983) is a valid assumption for this species. To do

this, we used the method of positioning means within

confidence intervals (Venables and Repley 2002).

Now we had b(T), ca(T) and l(T) modeled exclu-

sively as functions of temperature to finally fit into

R0(T) model.

The model for R0(T) for any k is as follows

R0ðTÞ ¼
qbðTÞ
lsðTÞ

Y
s�1

i¼1

ciðTÞ
liðTÞ þ ciðTÞ

� �k

ð4Þ

(see derivation in ‘‘Appendix 1’’).

Application and validation

We used the parameterized R0(T) to predict the range

of habitats that are non-invasible to P. marinus on a

global scale, based on sea surface temperature data

from NOAA Optimum Interpolation (OI) SST V2. The

range of habitat temperatures where R0(T) \ 1 is

considered to be non-suitable for population persis-

tence and hence non-invasible. We compared our

predictions with the known occurrences of P. marinus.

Results

Fertility rates

We found that the sigmoidal model for fertility rates

fits the data better than the linear model (Fig. 1).

The residual sum of squares (RSS) for the sigmoi-

dal model was 97.37, compared to 126.08 for

the linear model. Parameters for the sigmoidal

model were fm ¼ 13:89; fl ¼ 0:61; w ¼ 0:35; b ¼
6:01�C. Using the sigmoidal model, fertility rates

started at zero near or slightly above 0�C, and tended

to reach a maximum at temperatures above 25�C.

Intuitively, fertility rate should peak at some optimal

temperature, then decrease with increasing tempera-

tures, which our sigmoidal model does not recreate.

However, we are more interested in predicting

dynamics at lower temperatures, so the sigmoidal

model is sufficient. The results indicate that sigmoidal

model is a better statistical approximation as well as

having a theoretically better rationale than the linear

model.
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Maturation rates

We estimated stage maturation rates for cases k = 1,

2, and 3 by fitting Eq. 2 and its advanced model (in

‘‘Appendix 4’’) to data from Uye et al. (1983) at 20�C

(Fig. 2). We compared the fits using AIC and found

that k = 3 is the better statistical model than k = 1, 2

(Table 2). The model with k = 3 gives the lowest AIC

(Table 2). Note that P values for v2 goodness of fit test

for k = 1 and k = 2 with respect to k = 3 was\0.001.

This suggests that model with k = 3 is significantly

different from models with k = 1 and k = 2. Hence,

we concluded that the model with k = 3 is the most

reasonable. The estimated temperature-independent a
values in Eq. 3 are given in Table 3. We used them to

calculate stage-maturation rates and duration times at

any temperatures from Eq. 3

Mortality rates

We estimated values of / and v for Wiebull model for

different generations at different temperature regimes

(Fig. 3, Table 4). The parameters estimated for the

stage-independent mortality rates as a quadratic func-

tion of temperature were j2 = 0.0022/day, j1 =

-0.0563/�C day, j0 = 0.4211/�C2 day (Fig. 4). The

assumption that mortality rates are the same across all

stages was tested by examining the confidence intervals

of estimates in each stage-based mortality rate function

of temperature. The mean values of the model coeffi-

cients fell within the confidence intervals of every other

stages indicating that the data can be pooled. Hence, our

assumption that mortality rates are the same across all

stages for a given temperature is valid for P. marinus.

Net reproductive rate

We plotted R0(T) after incorporating the parameter-

ized sub-models b(T), ca(T) and l(T) (Fig. 5).

R0(T) tends to curve downwards at high temperatures

due to increasing mortality rate (Fig. 4) that sup-

presses the positive effect of increasing fertility rates

at higher temperatures (Fig. 1).
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Fig. 1 Rate of fertility of adult females at different tempera-

tures comparing sigmoidal model with linear model by Uye

et al. (1983). Dashed lines indicate 95% CI

Fig. 2 Proportion of individuals in the population not yet past a

given stage a (at 20�C) obtained by fitting Eq. 2 to data from

Uye et al. (1983). Solid lines are the fits for k = 1, dashed lines
are the fits for k = 3
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Table 2 Model comparisons for cases k = 1, 2, and 3 in Eq. 2 and its advanced model (in ‘‘Appendix 4’’)

Model RSS LL (LL/LLmax) v2 Degree AIC DAIC P (v)2

k = 3 0.57 120.56 0.00 0.00 14 -213.12 0.00

k = 2 1.04 108.83 -11.73 23.45 13 -191.67 21.45 1.28E-06

k = 1 1.88 97.29 -23.27 46.54 12 -170.58 42.54 7.83E-11

LL Log likelihood, LLmax Maximum log likelihood

Table 3 Stage maturation,

duration, and development

rates at 20�C, and

coefficient aa calculated for

each stage a for k = 1

Stage cað20�CÞ Stage duration time

dað20�CÞ (days)

Stage development time

Dað20�CÞ (days)

aa

e 3.64 0.27 – 55.01

n2 2.53 0.40 0.67 134.21

n3 1.05 0.96 1.63 325.81

n4 0.87 1.16 2.78 557.40

n5 0.65 1.53 4.31 864.01

n6 0.81 1.23 5.54 1,110.77

c1 0.54 1.84 7.39 1,479.68

c2 0.58 1.73 9.12 1,827.22

c3 0.60 1.66 10.78 2,159.64

c4 0.40 2.48 13.26 2,656.81

c5 0.29 3.48 16.74 3,353.02

c6 – 4.84 21.57 4,321.76
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Fig. 3 Proportion survived

at the end of each stage in

different temperature

regimes fitted to

Sv ¼ expð�/avÞ calculated

based on data from Liang

and Uye (1997a)
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Relatively lower values of R0(T) for higher k sug-

gest that the fitness of the population is reduced when

k is high regardless of the temperature. The model

R0(T) that best fits data was the one with parameter

k = 3. The uncertainty associated with the estimates

of R0(T) can not be calculated because parameters

taken from the literature did not have confidence

estimates (Uye et al. 1983; Liang and Uye 1997a). We

found that R0 [ 1 between 11 and 23�C, and this is

therefore the range within which the habitats are

potentially invasible to P. marinus. If other conditions

in a habitat are ideal and temperature falls within this

range, species could grow. At temperatures \11 and

[23�C, R0 \ 1 and habitats with these mean temper-

atures are non-invasible. If a habitat’s temperature

fluctuates seasonally between these two limits, it is

tolerable to P. marinus.

Application and validation

We mapped the range of habitats where yearly averaged

sea surface temperatures is between 11 and 23�C

(colored contours in Fig. 6) where they are potentially

invasible to P. marinus. Hence, the area where there are

no contour lines (23�C \ T \ 11�C) indicate the hab-

itats where P. marinus is non-invasible. Field sampling

evidence depicted in Fig. 6 suggests that our predictions

fit well into potentially invasible habitat range except for

marginal deviations of few occurrences.

Discussion

Here we proposed a novel methodology to model net

reproductive rate R0, which is a population persistence

metric, as a function of temperature (T) for invasive

marine copepod P. marinus based on the data from

experiments. This approach can be generally applied

to model R0 for aquatic copepods that respond to

environmental parameters markedly, reproduce year-

round, and have multiple overlapping generations

(species for e.g. as in Bonnet et al. 2009; Chen et al.

2006). Temperatures giving R0(T) [ 1 indicate habi-

tats where the species can physiologically persist,

assuming that other environmental factors are suitable

for its growth. Temperatures resulting R0(T) \ 1

Table 4 Estimation of / and v in Sv ¼ expð�/avÞ at different temperatures

Temp (�C) 10.60 14.30 16.70 20.20 21.50 22.30 25.60 27.40

/ 0.02 0.01 0.00 0.00 0.13 0.53 0.00 0.10

v 2.69 2.26 7.87 2.93 1.43 0.94 29.24 1.56

RSS 0.05 0.11 0.09 0.02 0.06 0.01 0.09 0.03

RSS Residual sum of squares

Fig. 4 Quadratic model of daily mortality rates as a function of

temperature, estimated for data where all stages are pooled.

Parameter values for mortality rate model are j2 = 0.0022/day,

j1 = -0.0563/�C day, j0 = 0.4211/�C2 day
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Fig. 5 R0 plotted as a function of temperature (T) for the cases

where k = 1 (exponentially distributed stage duration times),

and k = 3 (gamma distributed stage duration times)
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indicate habitats where the species cannot physiolog-

ically persist regardless of the other environmental

factors. Thus, our approach can conservatively predict

habitats which are non-invasible, and thereby habitats

which are potentially invasible. Note that we could not

calculate confidence intervals in the estimates due to

unavailability of primary data.

The habitats that are potentially invasible to

P. marinus as predicted by our model matched well with

field evidence of species occurrences in a global scale

except for few marginal deviations (miss-matches) on

the borders limiting R0(T) = 1. In particular, we note

that from Fig. 6, Elliot bay, Puget Sound is on the

border of non-invasibility range limiting R0(T). It has

been recorded in US Geological Surveys that

P. marinus has been sampled in that location by

Cohen (2004). However, up to now, there has been any

indication that it has established in that location. Further

northwards, Piercey et al. (2000) found that there was a

large propagule pressure of P. marinus on Vancouver

harbor (in 25.4% ships sampled, and occurring in

densities from 2 to 54 m-3). Our model predicts that

Vancouver harbor is also located on the border where

R0(T) = 1. We note that in above locations, tempera-

tures fluctuate seasonally throughout the year (DFO

Canada). To better predict non-invasibility in such

habitats we need a model that incorporates the effect of

seasonal variation in temperatures.

Furthermore, had we incorporated the survival data at

27�C, then the upper bound of R0(T) = 1 would have

F

E

N
B

C

D

K

J

I
A

G

L
H

M

Fig. 6 Contour lines (from 11 to 23�C) depict the range of

potentially invasible habitats by P. marinus as predicted by our

model based on R0(T) [ 1 for sea surface temperature (T) data

averaged from year 1971–2000 through NOAA interactive

database (NOAA Optimum Interpolation (OI) SST V2). Dots are

the habitats where P. marinus was collected or has established.

References are from Fleminger and Kramer (1989) except *:

(A) West coast of Hokkaido, Japan, Sato (1913), Anraku (1953),

Walter (1986); (B) Qing-Chao and Shu-Zhen (1965); (C) And-

aman Islands (Pillai 1980); (D) Mauritius (Grindley and Grice

1969); (E) Moreton Bay, Queensland (Greenwood 1977); (F)*

Patagonian Waters, Southern Chile (Jones, 1966; Grindley and

Grice 1969) from Hirakawa (1986); (G) Oahu, Hawaii (Jones

1966) (Carlton 1985)*; (H)* San Francisco Bay, California

(Ruiz et al. 2000); (I) Peter the Great Bay (Brodsky 1948, 1950);

(J) Chiba (1956), Tanaka (1966), Tanaka and Huee (1966),

Walter (1986b); (K) Brodsky (1948, 1950); (L)* Elliot Bay,

Puget Sound, Washington (Cohen 2004), US Geological

Surveys; (M) US Geological Surveys; (N) Shen and Lee (1963)
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shifted towards higher temperatures moving the poten-

tially invasible range more towards the tropics. We did

not incorporate those data as they were inconsistent with

the general trend in mortality rates with respect to

increasing temperatures and did not make sense

biologically, as outlined in the methods section.

The methodological basis adopted here in deter-

mining non-invasible habitats is in contrast to that of

ENM (Peterson 2003). ENM predicts habitat-suitabil-

ity based on a snapshot of environmental conditions

and species occurrences (Herborg et al. 2007a;

Peterson et al. 2007) by matching the range of

environmental variables in native habitats with that

in novel habitats (Jeschke and Strayer 2008; Mercado-

Silva et al. 2006). For e.g. Genetic Algorithm for Rule-

set Prediction (GARP) (Stockwell and Peters 1999) in

ENM has been commonly used to predict habitat

suitability for both terrestrial and aquatic invasive

species (e.g. Herborg et al. 2007a, b; Peterson 2003;

Peterson et al. 2007). The above methodology implic-

itly assumes that the limit to phenotypic plasticity in

population fitness traits is exhaustively represented in

the observed environmental set in their native habitats.

This, in turn, assumes that a species may only survive

and reproduce in habitats those having environmental

sets similar to that in their native ranges. Often, species

tolerate environmental set beyond that is found in

native habitats (Lockwood et al. 2006). For example, a

species distribution may be confined to a certain native

range due to natural barriers rather than environmental

parameters (Lonhart 2009) suggesting that absence is

not necessarily indicative of a habitat’s unsuitability.

In such cases, ENM may not be able to fully capture

the potential range of the environmental set that a

species may tolerate. For this reason, ENM can

overlook habitats where a species can potentially

survive and reproduce, especially in cases where

human-mediated transport may facilitate jump dis-

persal (e.g. Broennimann et al. 2007). Our approach

avoids this particular limitation in ENM.

Our model is designed to quantify R0 at low

introductory populations to determine the species

establishment potential. Hence, we did not explicitly

account for the density dependence of the population.

Further, we disregarded Allee effects (Taylor and

Hasting 2005; Courchamp et al. 2008; Kramer et al.

2008) although it may be a factor that acts against

species establishment at low population levels (Lock-

wood et al. 2006; Wittmann et al. 2011). In such cases it

is possible to have a backward bifurcation, where a

species can persist even when R0 \ 1, and hence a

different approach would be needed to analyze popu-

lations with Allee effects. Biologically, inclusion of the

Allee effect may further filter out a subset of non-

invasible habitats from potentially invasible habitats.

This will complement and further refine our predic-

tions which were made without the case of Allee effect.

Sea surface temperature has been rising over the

last few decades (Cane et al. 1997). Our model can be

used as a tool to determine how climate change may

affect species range expansion. For P. marinus, the

shape of R0(T) curve suggests that with increase in sea

surface temperature, the potentially invasible habitat

range may tend to shift towards currently cooler

waters. However, the impact of climate change on

current seasonal changes in sea surface temperature

may also be a critical factor in determining long term

effects on niche shifts. For example, temperature data

from Racerock, B.C., spanning the years 1921–2008,

indicates that annual low temperatures have not

increased as much as annual high temperatures. The

impact of such non-linear increases in temperatures

may have non-linear effects on R0. Hence, we may not

be able to rescale the range of R0 by simply adding the

expected increment to mean sea surface temperature.

A proxy of using mean temperatures to characterize

a habitat is appropriate in cases where temperature

forces R0 to be either strictly less than 1 or greater than

1 through all seasons. Hence, our result is only

applicable to habitats where all seasonal temperatures,

were they held constant or averaged, would force R0(T)

to be greater than 1 or less than 1 throughout a year.

However, in habitats where temperatures fluctuate

seasonally, or daily, forcing R0(T) [ 1 in one period,

and R0(T) \ 1 in another period, we cannot make clear

predictions on habitat invasibility by metric R0(T)

alone. Yet, we could presume that a habitat to be more

unfavorable to a species when the seasonal fluctuations

of a factor forces R0 \ 1 in longer period of the year,

and vice versa. It may be useful to incorporate the

effects of short term and seasonal temperature fluctu-

ations on R0 (see Bacaeer 2009; Bacaeer and Ouifki

2007; Wesley and Allen 2009).

An extension to our model would be to incorporate

vital rates as functions of other environmental factors such

as salinity. We can then calculate R0 in a two-dimensional

environmental space. It may increase the non-invasible

habitat set for the species reducing the potentially
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invasible habitat set. Recent work towards modeling the

combined effect of temperature and salinity on population

persistence is found in Strasser et al. (2011).
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Appendix 1: Deriving R0 from graph theoretic

method

Following the method given in de-Camino-Beck and

Lewis (2008), here we have a real 12 9 12 matrix

ðFk�1 � VÞ ¼ aij after decomposing matrix A from

Eq. 1 into matrices F, fertility, and V, transition.

Hence, for matrix (Fk-1 - V), there corresponds a

labeled directed graph, D(Fk-1 - V), with nodes 1,

2, …, 12, and a directed edge (arc) j ? i. The weight

of this arc is aij, and D(Fk-1 - V) has a loop at node

i of weight aij if aij = 0. Thus, we can draw the

diagraph, D(Fk-1 - V), as follows.

……….n1 n2 n3 n12n11

-(γ2+µ2) -(γ3+µ3) -(γ10+µ10) -(γ11+µ11)

-(γ1+µ1) -µ12n10

-γ1 -γ2 -γ10 -γ11-γ9-γ3

qβλ-1

We created trivial nodes using graph reduction Rule

1 in de-Camino-Beck and Lewis (2008) by reducing

the loops -aii \ 0 to -1 at node i’s, for every arc

entering i divided by weight aii. Thus the diagraph will

be reduced to the following.

n1 n2 n3 ………. n12n11

-1

-1 n10

-γ1 

(γ1+µ1) 

qβλ-1

µ12

-γ2 

(γ2+µ2) 
-γ10 

(γ10+µ10) 

-1 -1 -1

-γ11 

(γ11+µ11) 

-1

Using Rule 2 in de-Camino-Beck and Lewis

(2008), by eliminating arcs through trivial nodes, here

we replaced two arcs at a time by j ? k with weights

equal to the product of weights on arc j ? i and i ? k,

for trivial nodes i on a path j ? i ? k. Thus, it finally

yields the following diagraph with a single node.

n12

11
1

112

1 i

i i i

q γβ λ
μ γ μ

−

=

⎛ ⎞
− + ⎜ ⎟+⎝ ⎠

∏

Finally, we set the weight of this loop to zero giving

and equation of lambda. The smallest positive roots of

this equation yielded R0.

R0 ¼
qb
l12

Y
11

i¼1

ci

ci þ li

� �

Furthermore, when there are 2 sub stages in each stage

(that is k = 2), the initial graph is given as follows:

n1 n1 n2 ………. n12n12

-(γ1+µ1) -(γ2+µ2) -(γ11+µ11) -(γ12+µ12)

-(γ1+µ1) -µ12n11

qβλ-1

-γ1 -γ1 -γ11 -γ12-γ11-γ3

qβλ-1

Using Rule 1, this can be reduced as follows.

n1 n1 n2 ………. n12n11

-1

-1 -1

-γ1 

(γ1+µ1) 
-γ1 

(γ1+µ1) 
-γ11 

(γ11+µ11) 

-1 -1

-γ2 

(γ2+µ2) 
-γ11 

(γ11+µ11) 

1 1
112

12 12 12 12

1

( )

q q
q

βλ γ βλβλ
μ γ μ μ

− −
−⎛ ⎞

+ =⎜ ⎟ +⎝ ⎠

It finally yields,

2
11

1

112

1 i

i i i

q γβ λ
μ γ μ

−

=

⎛ ⎞
− + ⎜ ⎟+⎝ ⎠

∏ n12

Thus, R0 ¼ qb
l12

Q11
i¼1

ci

ciþli

� �2

:

644 H. Rajakaruna et al.

123



Similarly, for any k sub stages, it yields,

R0 ¼ qb
l12

Q11
i¼1

ci

ciþli

� �k

.

The same result can be easily derived from

R0 = q[FV-1] also.

Appendix 2: General solution for na(t)

We obtained the following general solution for na(t),

the proportion of individuals in a given stage a at time t

in Eq. 1:

naðtÞ ¼
Q
a�1

i¼1

ci

� �

ba:mað Þ for a [ 1;

n1ðtÞ ¼ e�r1tc1 for a ¼ 1;

ð5Þ

where, ri = (ci ? li) such that ci [ 0 and li [ 0

for any stage i and rij = (ri - rj), and ba is a row

vector of dimension 1 9 (a - 1) of the form

ba ¼
Qa

j¼1 Bj, j = 1, …, a, where, Bj matrices are

non-square matrices such that B1 ¼ 1; B2 ¼ r�1
21 ;

B3 ¼ r�1
31 �r�1

32

� �

; B4 ¼
r�1

41 0 r�1
43

0 r�1
42 r�1

43

	 


;

B5 ¼
r�1

51 0 0 r�1
54

0 r�1
52 0 r�1

54

0 0 r�1
53 r�1

54

2

4

3

5, and so on. The gen-

eral formula for Bk (k C 3) can be written as,

Bk ¼

r�1
k1

0

:
0

0

0

r�1
k2

:
0

0

: 0 0 r�1
kk�1

: 0 0 r�1
kk�1

: : : :
: r�1

kk�3 0 r�1
kk�1

: 0 r�1
kk�2 r�1

kk�1

2

6

6

6

6

4

3

7

7

7

7

5

ðk�2Þ�ðk�1Þ

Note that due to the dimensions of the Bj matrices, the

product ba ¼
Qa

j¼1 Bj is a vector. We define the vector

va to be a column vector of the form,

ma ¼

e�r1t � e�rat

e�r2t � e�rat

e�r3t � e�rat

:
e�ra�1t � e�rat

2

6

6

6

6

4

3

7

7

7

7

5

ða�1Þx1

:

Appendix 3: Analysis of the case with constant

mortality amongst stages

To see that the assumption of equal mortality at each

stage cased the mortality rates in Eq. 5 to cancel out

mathematically, consider the case where each li is a

constant l in our solution Eq. 5. Then note that in

Eq. 5, rij becomes independent of l, and as a result ba

also becomes independent of l. Further, in ma, ðe�rit

�e�ratÞ can be written as e�lt e�cit � e�catð Þ for each

element i. Thus, in the dot product ðba:maÞ in the Eq. 5,

the term e�lt can be separated out as a multiplier, and

after redefining, naðtÞ ¼ e�lt
Qa�1

i¼1 ci

� �

ðba:maÞ, such

that term
Qa�1

i¼1 ci

� �

ba:ma

� �

becomes independent of

l. i.e. ba ¼ ba and ma ¼ ma for the special case where

li = 0 for all stages i. Now, we can write the

proportion of each stage a that remains at time t,

za(t), with respect to the total population at t:

zaðtÞ ¼ naðtÞ=
X

s

i¼1

niðtÞ

¼
Y
a�1

i¼1

ci

 !

ba:ma

� �

=
X

s

j¼1

Y
j�1

i¼1

ci

 !

bj:mj

� �

where, s is number of stages. Thus, this equation is

independent of l. The numerator of this equation is

na(t) for the case where li = 0 for all stages for any t.

The denominator is the solution to
Ps

i¼1 niðtÞ for the

special case where li = 0 for all stages at any t if the

population starts from 1 egg, thus remains 1 at any t.

Hence, this can be simplified, so that,

zaðtÞ ¼
Y
a�1

i¼1

ci

 !

ba:ma ð6Þ

which, is equivalent to za(t) = na(t) when li = 0 for

all stages at any t. Therefore, za(t) can be equated with

the stage sizes normalized at each time step t in

experimental data found in the literature which makes

the assumption that li = l for all i = 1 to s.

Appendix 4: Fitting Eq. 2 to data using multiple

substages

To derive solution to the modified system of equations

in Eq. 1 by adding k sub-stages to each stage required

using Laplace transformations. It yielded a compli-

cated analytical result. Instead, we modified Eq. 2 to

include sub-stages within stages, by assuming small

differences in maturation rates among sub-stages.

However, the solution in Eq. 2 cannot be simply

transformed into a general case for the system to have
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multiple sub-stages, because in such case the denom-

inator of the solution in Eq. 2 becomes zero, mathe-

matically, as rij = 0 when i and j were redefined for

sub-stages in each stage, such that ri = rj. Therefore,

we implemented the sub-stages for a given stage a by

adding and subtracting a small constant (e) to ca such

that e � ca. For example, separating ca into three sub-

stages would involve splitting ca among the three sub-

stages, such that maturation rates were ca = [ [ca

- e, ca, ca ? e]. Then we estimated ca using the

modified Eq. 2 fitting to data from Uye et al. (1983) for

small values of e.
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